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Relativistic closed-shell atoms are treated by the use of a specific approximation 
for the small component of the one-electron Dirac spinors. I t  is assumed that the 
large and the small component are interconnected by a parameter-dependent 
relation which is formally analogous to that of the one-electron system. Subject 
to this constraint, the total energy is varied with respect to the large components. 
The resulting eigenvalue equations for the large components contain only 
regular potential terms and reduce to the familiar Har t ree-Fock equations in 
the limit of infinite velocity of light. Analytical solution of these approximate 
relativistic Har t ree-Fock equations is achieved using a minimum basis set of 
Slater-type functions for the expansion of the radial part of the large compo- 
nents. Total relativistic energies, orbital energies, orbital exponents and mean 
radii are calculated for the ground states of  He, Be, Ne, Mg, Ar, Kr, Xe and 
Cu + . 
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1. Introduction 

Numerical solutions of  the relativistic Har t ree-Fock (RHF) equations (for a review 
see [1]) have been obtained for many atomic systems [2-7], and compilations of  
relevant data exist [8-10]. However, analytical solutions of the R H F  equations 
within the LCAO approximation [11-13] were obtained only for a few atoms [11, 
13]. The predominant use of  the numerical integration method is mainly due to the 
fact that in the LCAO-RHF method large basis sets are needed since the number of 
one-electron states is almost doubled, and furthermore the large as well as the small 
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components of the Dirac orbitals have to be represented adequately. Thus, Kim [11] 
remarks " that  the so-called minimum basis set relativistic wave functions lead to 
results so bad that it makes no sense to do any relativistic calculations with them".  

In the following, an attempt is made to reduce the difficulties arising from the in- 
creased size of the basis set by taking the approximation of an a priori relationship 
between the large and the small component of the one-electron Dirac orbitals. This 
functional relation is, in the case of a many-electron atom, chosen in analogy to 
that one which for the one-electron problem is obtained by the elimination method 
[14]. Given this functional relation an implicit eigenvalue problem for the large 
component is derived by varying the Iotal energy with respect to all large compo- 
nents only. According to this approximation only regular potential terms in the 
RHF equations appear which in the limit of infinite velocity of light reduce directly 
to the nonrelativistic Hartree-Fock (NRHF) equations. 

In order to estimate the numerical accuracy of the proposed approximation, 
calculations for some relativistically closed-shell atoms are performed using a 
minimum basis set (MBS) of Slater-type functions (STFs) for the radial part of the 
large components. The numerical results for relativistic total energy corrections and 
orbital energies are in fairly good agreement with those of numerical RHF cal- 
culations. 

2. Approximate Relativistic Hartree-Fock Equations 

2.1. The Functional Relation between the Large and the Small Components 

For an atom with N electrons and a nuclear charge Z the Hamiltonian (in a.u.) is 
taken to be 

H = ~ h~ + (1) 
�9 . j " '  

where hi represents the Dirac-Hamiltonian for the ith electron 

Z (2) 

Here, c is the velocity of light (c = 137.0373 in a.u.) and e and fi' are 4 x 4 matrices 

(0 a) f l ' =  ( ;  012 ) (3) 
~ =  0 ' --2 ' 

The vector a has the 2 x 2 Pauli spin matrices as its components; the energy-scale 
has been shifted by - c  2 to subtract the electronic rest-energy. 

In principle, some relativistic two-particle interactions neglected in (1) could be 
taken into account by using the Breit operator in 1st order perturbation theory [14]. 
For closed-shell systems the N-electron trial wavefunction tF is taken to be a single 
Slater determinant 

1 
'F - ~ I,b~(1),~(2)...~bu(N) 1 (4) 
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where the four-component Dirac orbitals ~b form an orthonormal set 

Thus, the total energy is given by 

E = ~" (~b,(1), h(1)~b~(1)} + ~b~(1)~bj(2), - -  ~b,(1)~bj(2) (6) 
, r12 

where Pu denotes the transposition operator. Now, it is convenient to partition ~b 
into two-component Pauli spinors 9 and X, the large and the small component, 
respectively, 

~b= (~) .  (7) 

Substitution of (7) in (6) and application of the variational principle leads to the 
RHF equations (see e.g. [15]): 

_ Z 1 1 - Pu calplX~(1) ~ - [ % (  ) + ~ { f  dSx2q~7(2) r--r-~2 ~~ 

+ f dSx2x+(2 ) 1 - P~___...~ X,(2)~o,(1) : e~,(1) 
J r12 ) 

c%P19~(1) - {]-f-~ ~ + 2c2}x~( 1 ) 

+ ~. { f  d3x2cP? (2) 1-r12P~ 9j(2) + 

= ~ x ~ ( 1 ) .  

(8a) 

f d 3 x 2 x + ( 2 ) ~ X j ( 2 ) }  x~(1) 

(8b) 

In order to reduce the size of the basis set to be used in the LCAO representation 
of the orbitals one would try to eliminate all the small components x in either of the 
Eqs. (8); it is however not possible to accomplish this in an exact and closed way. 
Bersuker et al. i15] used the method of successive approximations to eliminate X in 
(8a) and thus obtained an equation which is exact up to the order (l/c) 2 and which 
only involves the large components. 

In the following a different approach is proposed. X~ is assumed to be interconnected 
with q~i by a fixed relation of the form 

X~ = f~i~ (9a) 

where 

and 

(9b) 
1 f~i = ~c B7 101) 

1 
Bi -- 1 + ~ (ei - qb). (9c) 
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In (9) the function �9 represents a local potential and the parameters e~ are assumed 
to be real numbers. For a single electron in the field of a nucleus Eq. (9) holds 
exactly if �9 is identified with the nuclear potential and the e~'s are interpreted as the 
orbital energies (see later Eq. (21)) [14]. 

2.2. Variational Equation for the Large Components 
With the above relation (9) the total energy (6) is given by 

1 
E = ~ (%(1), h~(1)50~(1)} + ~ ~ ~ (,p~(1)50:(2), 2u(1, 2)50~(1)50:(2)5 (10) 

and the orthonormality condition (5) becomes 

~9~, (1 + f2+~:)50:} = 3 u. (11) 

In Eq. (10) we used the abbreviations 

Z ( Z 2c 2) f)~ (12) ~ = - ] ~  + copa~ + n+c~p + ~+ - I x - ~ -  

and 

2u(1, 2) = 1 - Pu + f2+(1) 1 - Pu f2~(1) + -Q+(2) 1 - Pu ~:(2 ) 
r12 r12 /'12 

+ D+(1)D+(2) 1 - Pu f):(2)f2~(1) = 2[2 + 2~'2 (13) 
r12 

where the terms not containing Pu were collected in ~'la while those containing the 
transposition operator belong to g~z. 

In order to find a stationary energy value all the large components in the energy 
expression (10) are varied subject to the constraint of the orthonormality condition 
(1 1). In other words, the variations 8 X which, according to the variational principle 
should be independent of  the variations 350 are compelled to have the form 

3 x = f2 350. (14) 

Since all arguments concerning the diagonalization of the matrix of the Lagrange 
multipliers still hold, the eigenvalue equation 

{~(1) - ~Y~+(1)D~(1) + ~ (9:(2), 2u(1, 2)50:(2)}}50~(1) - ~%(1) = e~50~(1) 

(15) 
and the total energy expression 

1 
E = ~ e ~ -  ~ ~ ~ (50~(1)50:(2), 2u(1, 2)50,(1)~,(2)} (16) 

are finally obtained. The one-electron part in the 1.h.s. of Eq. (15) is given explicitly 
by 

Z 1 1 

l f (-~x~ 1 4 d  ~p (~ - c)  + + �9 ~p. (17) 
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2.3 Choice o f  Parameters 

The potential �9 and the parameters e~ were not obtained from the variational prin- 
ciple and thus have to be determined by some judiciously chosen criteria. Specific 
choices are the following: in a first approximation qb is set equal to the potential of 
the bare nucleus 

Z �9 - (18) 
Ixl 

thus 

(19, B ,  = B ? ) ( e 3  - B~ e , ,  - . 

This form of q~ has the advantage that after expansion of the radial parts of the ~o~ 
into Slater-type functions all the one- and two-electron integrals appearing in Eq. 
(11) and (16) can be solved analytically (cf. the appendix). 

Given X by (18), two choices for the parameters e~ have been tried: 

a) e~ = ei. (20) 

If e~ is identified with the eigenvalue e~ of Eq. (15), the operator D~ (17) is reduced 
to an operator a~ well known from the elimination method [14] in the one-electron 
problem 

Z 1 1 
a~(e,) = - T ~  + 2 ap ~ ap. (21) 

Furthermore, the eigenfunctions corresponding to different eigenvalues e are 
guaranteed to be automatically orthogonal in the sense of (11) [16]. For this choice 
of parameters the quasi-relativistic equations for the spinor ~o, which have been 
derived by Bersuker et al. [15] may be obtained from (15) by substituting the power 
series expansion 

1 B~0)(e,)-z ~ 1 - ~ (~, - (I)) 4 - . . .  

and neglecting all terms of order higher than O(1 [c2). The resulting equation agrees 
with the quasi-relativistic HF equation (Eq. (11) in [15]). 

b) e, = d, - (~p~, c~(e,)~q)/(rp~, ~0~) = (~o~, h~(e,)cp,>. (22) 

If  e~ is identified with the expectation value of the one-electron operator c~(e0, the 
numerical solution of Eq. (15) is simplified, since the two-electron contributions do 
no longer depend on the eigenvalues e to be determined. However, for the choice 
(22) Eq. (15) satisfies the variational principle only approximately since in deriving 
(15) the f~ have been assumed to be independent of the wavefunctions. 1 

This point has been noted by the referee. 
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2.4. Formulae for Matrix Elements 

In a central field the orbitals ~ can be separated by using polar coordinates [17] 

(23) ~(x) = ~b~,(r, e, q~) = r kiQn~(r)x_ ~,(e, ~o)) 

with the phase chosen in such a way that the radial functions P and Q are both real. 
Properties of the complete and orthonormal set of spinors X are given in [17]. The 
quantum numbers x and tz are interrelated with the total angular momentum j and 
the orbital angular momentum I by 

1 
J = - 

1 Jr 
t = j  + 

and/x = - j ,  - j  + 1 . . . . .  j - I, j. The principal quantum number n labels orbitals 
which cannot be distinguished by x and/~. Using 

r =rl f f  ( _ p ,  + / ( / +  e)r___T__p)_f,(p, + ; P ) )  (24) 

where the prime denotes differentiation with respect to r, one obtains 

f;(  [ (~o,, ~(e,)9,) = dr - Z  + ~1 _pp, ,  + l(l r -m-g--+ 1)p2 

1 Z ( r ) ] )  2e z Br 2 pp,  + p2 (25) 

with P - P~,~, and B - B}~ The orthonormality condition (11) results in 

fo ~176 { 1 1 [-PIP;' + lj(ls + 1) p~pj dr P~Pj + 4c ~ B, Bj r ~ 

- "2c 2 B~Bj r 2 P~Pj + r P~Pj = 3~j. (26) 

The two-electron part of Eq. (16) can be evaluated along the lines given by Grant 
[1]. The Coulomb integrals are given by 

(~(1)9~(2), g;2cp~(1)c&(2)) = ~ av((j, tz)~, (j, Iz)y)Fv(i, j )  

where 

v = 0, 2, 4 , . . . ,  Min [(2j~ - 1), (2jj - 1)] (27) 

and the exchange integrals are given by 

(9,(1)g,~.(2), g~'29~.(1)~o,(2)) = ~ b~((j, t*),, (J, t*)i)G~( i, J) 
-# 



Approximate Relativistic Hartree-Fock Equations 41 

where 

K i Kj 
even if ~ T  # ]x~[ 

Ik -JJl < ~ ~<J, + J /  and j, + j ,  + v = (28) 
~ tQ 

odd if ~ = 

Therein the notations 

F~(i,j) = dr1 dr2U~(1, 2){P~(rl) + Q~(rl)} • {P~(r2) + Q~(r2)} (29) 

jo G~(i,j) = dr1 dr2U~(1, 2){P~(rl)Pj(rl) + Q~(r~)Qj(rl)} 

x {P~(r2)Pj(r2) + Q~(r2)Qj(r2)} (30) 

with 

2cB~ ~  1 ( K p )  Q~ P{ + r ~ (31) 

and 

V V+ Uv(1, 2) = r</r> 1 

are used. The numbers av and b~ can be taken from tables [1]. 

3. Calculations Using a Minimum Basis Set of Slater-Type Functions 

The radial functions P are expanded according to 

P,~(r) = ~ c~r ~, exp { -  ~r}. (32) 
i = l  

The exponents ~ are real nonlinear variational parameters. Given ~, the coefficients 
c~ are completely determined via the orthonormality condition (26). All exponents 
n~ are taken to be integers n~ = l + i, though the cusp condition for Eq. (15) requires 
noninteger values n' = [K 2 - (Z/c)2] 1/2. 

Actually, because of relation (31) the radial part Q of the small component is 
expanded into a definite infinite set of STFs; this becomes evident if the function 
B-1 is expanded as a power-series of r. 

The orbital exponents ~ which yield a stationary value for the total energy (16) have 
been determined for the atoms He, Be, Ne, Mg, Ar, Kr, Xe and for the ion Cu +. 
Optimal values ~ were calculated iteratively: in the kth cycle each exponent ~ was 
varied by small amounts T- 8~ and corrected afterwards according to 

~k+l, = ~k)+  wT{k) (33) 

with a damping factor w 4 1 and 

8, [E({ + 8,) - E({ - 8,)]/[E({ + 8,) + E({ - 8,) - 2E({)]. (34) T , = - 7  



42 F. Rosicky and F. Mark 

Convergence  was assumed if  all quot ients  [T~[ became less than  a th reshold  value 
0.05 for  Xe and 0.0001 for  all o ther  a toms.  

The  to ta l  relat ivist ic  energies ERsz are  recorded  in Table  1. Energies calcula ted 
accord ing  to bo th  choices of  pa rame te r s  e~ (i.e. e~ = e~ and  e~ = d0 are a lmos t  equal  
for  low a tomic  numbers  but  differ increasingly for heavier  a toms  in such a way tha t  
the  values for e~ = e~ become lower  than  those for  the second choice o f  e~. The  
MBS energies are  less negative than  the energies E~H~ calcula ted  by the numerica l  
R H F  method  [8]. Values  for  the percentage  e r ro r  100 (E~F  - ERsz)/E~nv range 
f rom 0 . 1 1 ~  to 0 . 5 8 ~  and  show s t rong scat ter ing for  different a toms.  However ,  the  
differences AERsz between relat ivist ic  (using e~ = e 0 and nonrelat ivis t ic  [18, 19] 
single-~ to ta l  energies fol low closely the cor respond ing  energy differences AEr~Hr o f  
numer ica l  R H F  and N R H F  [20] calculat ions (see columns 1 and 2 o f  Table  2); the 
values AEgsz and  AE~nr agree  within less than  7~ .  

In  the calcula t ion of  AERsz = E R s z -  ENRsz both  to ta l  energies have been 
op t imized  with respect  to the orbi ta l  exponents  ~. I f  the exponents  of  N R H F  
single-~ wavefunct ions  are  used to calculate E~sz, relat ivist ic  correc t ions  AE(~z 
resul t  which are shown in co lumn 3 o f  Table  2. F o r  low a tomic  numbers  bo th  AE 
values a lmos t  agree,  bu t  with increas ing Z,  AE(R~z becomes progressively smaller  
c o m p a r e d  to  AE~sz. Relat ivis t ic  cor rec t ions  app rox ima te ly  comparab l e  to  A E ~ z  
have been ob ta ined  by H a r t m a n n  and  Clernenti  [21] who calcula ted relat ivist ic  
f i rs t -order  pe r tu rba t ion  energies AE~ca using N R H F  single-~ wavefunct ions  and a 

Table 1. Total relativistic energies [negative values in a.u.] 

Atom Z e a ERsz b ER~F c Error ~ 

He 2 e 2.847764 2.8618 0.49 
d 

Be 4 14.5594 14.5759 0.11 
d 

Ne 10 8 127.9494 128.6920 0.58 
d 

199.1638 
Mg 12 d 1 9 9 . 1 6 3 7  199.9352 0.39 

e 527.5733 Ar 18 528.6845 0.21 
d 527.5727 
e 2779.9115 Kr 36 2788.8845 0.32 
d 2779.8929 

7420.0079 Xe 54 7447.1605 0.37 
d 7419.8719 

1646.2005 Cu § 29 1653.2211 0.42 
d 1646.1948 

Parameter e chosen according to Eq. (20) (e = e) or Eq. 
(22) (e = d). 

b Relativistic single-~ calculation. 
~ Calculated by means of Desclaux's program [7]. 
d Percentage error 100(E~F -- ERsz)/Er~Hr. 
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Atom Z AE~sz a AE~aF b AuCl) ~,o AE(1) a E e ~RSZ H--C1 mag 

He 2 0.000108 0.000133 0.000108 
Be 4 0.0027 0.0029 0.0027 
Ne 10 0.1373 0.1449 0.1365 
Mg 12 0.3060 0.3205 0.3038 
Ar 18 1.8080 1.8670 1.7781 
Kr 36 35.392 36.830 33.175 
Xe 54 200.2 215.022 174.156 
Cu + 29 14.046 14.493 f 13.457 

0.000004 0.00006 
0.0015 0.0007 
0.1152 0.0175 
0.2671 0.0339 
1.6822 0.1434 

a Difference between relativistic (e = ~; Eq. (20)) and NRHF [18, 19] single-~ total energy. 
b Difference between numerical RHF and NRHF [20] total energy. 
~ Relativistic energy calculated using the exponents of NRHF single-~ wavefunctions. 
a First order perturbation energy using the Breit operator in Pauli approximation and NRHF 

single-~ wavefunctions [21]. 
Magnetic interaction calculated by means of Desclaux's program [7]. 

f NRHF energy calculated by means of Desclaux's program [7] setting c = 137-106. 

part  o f  the Breit operator  in the Pauli approximation (column 4 of  Table 2). Since 
the values AE~cl  include relativistic effects in the two-electron interaction, the 
magnetic contribution Em~g calculated by Desclaux's numerical R H F  program [7] 
is listed in the last column of  Table 2. Taking into account  these contributions the 
values o f  AE(~z and AE~cl  are similar except for He and Be. 

Table 3 contains orbital energies e for Kr  obtained f rom (15) by solving the implicit 
equation (~o~, ~o~)  = e~(9~ , cp~) with q~ = -Z/ lx  I. For  either choice of  the param- 
eters the values e are in general agreement with experimental X-ray level data as 
well as with the eigenvalues of  numerical R H F  calculations; the largest deviations 
are found for the energetically highest orbitals. The fine structure splitting 
Ae = en, 1_1/2 - e,,1 +1/2 is in fairly good agreement with experimental data. 

Except for the case o f  the ion Cu + (3d 1~ where the limitations of  an MBS become 
apparent,  the results for Kr  are representative for all other atoms under considera- 
tion. For  the Cu + ion (Table 4) the lowest orbital energies agree reasonably well 
with experimental binding energies for metallic Cu [23], but  the highest-lying 
d-orbitals are destabilized to such an extent that  they become antibonding. This 
deficiency is due to the use of  an MBS only. It  also appears in the corresponding 
nonrelativistic calculation and can be avoided by taking a 3d-function o f  double-~ 
quality. 

Table 5 shows the optimized exponents ~ of  the relativistic MBS-STFs and relativ- 
istic screening constants e which are defined as the differences between the R H F  and 
the N R H F  [l 8, 19] orbital exponents. The values ~1~ increase rapidly with increasing 
atomic number.  F rom Cu + on they even exceed Z, indicating a deshielding of  the 
nucleus. In  contrast, the shielding ( Z - : ~ l s )  o f  the nonrelativistic Is-function 
becomes larger for high Z ]18, 19]. The reason for the strong contract ion o f  the 
relativistic ls-orbitals is discussed later. 
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Shell j e~sz ~ essz b e~asz ~ fie ~'a eaEr e Ae ~,a E~p f Ae f,d 

Is 1/2 528.943 
2s 1/2 71.226 
2p 1/2 64.297 

2p 3/2 62.477 
3s 1/2 10.736 
3p 1/2 8.323 

3p 3/2 8.004 
4s 1/2 1.066 
4p 1/2 0.456 

528.709 520.068 529.695 526.47 
71.070 68.717 72.081 70.60 
64.120 64.875 63.47 

62.625 1.820 1.996 1.92 
62.303 62.879 61.55 
10.653 10.133 11.225 10.6 

8.250 8.620 8.18 
7.877 0.319 0.307 0.32 

7.931 8.313 7.86 
1.051 1.007 1.188 1.012 
0.444 0.5415 0.539 

0.4209 0.024 0.0272 0.025 
4p 3/2 0.432 0.420 0.5143 0.514 
3d 3/2 2.948 2.869 3.778 

2.943 0.042 0.051 3.27 
3d 5/2 2.906 2.828 3.727 

Calculated with e = e (Eq. (20)). 
b Calculated with e = d (Eq. (22)). 
~ Calculated by the technique of Roothaan-Bagus [28]. 
d ~ 8  ~- 8 n , 1 - 1 l  2 - -  8 n , l + l l  2. 

e Calculated by means of Desclaux's program [7]. 
f X-ray levels from Ref. [22]. 

Table 4. Orbital energies 8 for Cu§ 1~ (negative values in a.u.) 

Shell j ~Rsz a ~N~sz b Aeo e~rH a A~ Ee~p ~ 

ls  1/2 332.610 328.926 
2s 1/2 41.302 40.262 
2p 1/2 36.163 

35.514 
2p 3/2 35.460 
3s 1/2 4.769 4.523 
3p 1/2 3.577 

2.971 

332.55 330.14 
41.958 40.48 
36.559 35.11 

0.703 0.721 
35.838 34.38 

5.471 4.57 
3.743 

0.110 0.096 2.87 
3p 3/2 3.067 3.647 
3d 3/2 -0 .177  0.810 

-0 .208 01017 0.012 
3d 5/2 -0 .194 0.798 

a Calculated with e = e (Eq. (20)). 
b Calculated by the technique of Roothaan-Bagus [28]. 
c A 8  ~ 8 n , 1 . _ l l  2 _ _  ~n,1+1/2. 

d Ref. [3]; a finite nucleus is assumed. 
e Values for metallic Cu as quoted in [23]. 
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As one would expect, for a given a tom the relativistic screening constants cr decrease 
whenever the quantum numbers  n and j are raised. In  comparison to N R H F  
calculations some of  the highest lying R H F  orbitals are deshielded. This is due to 
an indirect relativistic effect [24-26]. As a consequence o f  the relativistic contract ion 
o f  the inner shells the nuclear charge for the outermost  orbitals is screened to a 
larger amoun t  than in the case o f  nonrelativistic atoms. 

The radial exponents n of  the MBS functions (32) were chosen to be integers. In 
the following, the capability o f  these functions to account  for the relativistic modifi- 
cations of  the shape o f  the radial wavefunctions is discussed. Since relativistic effects 
are largest for the innermost  orbitals as judged f rom the screening constants ~, the 
Is-function is taken as an example. 

Table 6 shows the relativistic mean radii and the ratios o f  their relativistic and non- 
relativistic values for the ls-orbitals;  these quantities are given for the numerical 
and the analytical single-~ R H F  wavefunctions as well. The mean radii ?Rsz differ 
f rom ~RaF within 1 -4~ ,  the largest deviation occurring for He. However,  if Z 
increases the rat iosfRsz decrease more  rapidly than the ra t iosf~ar .  The reason for 
the excessive contract ion o f  the MBS ls-orbitals can be inferred by fitting the 
numerical R H F  and N H R F  functions by a single STF of  the form r r e - %  where 
is considered as fitting parameter  in the least-squares procedure.  First ~, is fixed by 
9' = 1 for both functions. In a second step ~, for the relativistic function is set equal 
to the value for the hydrogenic Dirac 1s-orbital, 7' = [1 - (Z/c)2] 1/2. The values of  

and the RMS errors are given in Table 7. 

In the nonrelativistic case the expected result ~ < Z is obtained. However,  in the 
relativistic case the exponents ~ exceed Z if 7' = 1. Fur thermore  the RMS errors 
grow strongly for atoms with higher atomic numbers.  But, if ~, is chosen to satisfy 
the cusp condit ion the relation ~ < Z is fulfilled again and the RMS errors are 
reduced to those for the nonrelativistic functions. 

Table 6. Mean radii f and ratios f of the relativistic and 
nonrelativistic mean radii of Is-orbitals 

A t o m  Z /~RSZ a /TRttF b fRSZ c fRHF d 

He 2 0.8888 0.9272 0.9999 0.9999 
Be 4 0.4069 0.4149 0.9936 0.9998 
Ne 10 0.1552 0.1574 0.9913 0.9983 
Mg 12 0.1287 0.1303 0.9899 0.9976 
Ar 18 0.08487 0.08562 0.9858 0.9944 
Kr i 36 0.04094 0.04147 0.9610 0.9771 
Xe 54 0.02592 0.02665 0.9146 0.9470 

Calculated with e = e (Eq. (20)). 
b Calculated by means of Desclaux's program [7]. 
~ Nonrelativistic values calculated by the technique of 

Roothaan-Bagus [28]. 
a Nonrelativistic values from Ref. [20]. 
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Table 7. Orbital exponents ~ and RMS errors F( x 10 4) obtained by fitting the 
nonrelativistic ~ and the relativistic b ls-orbitals to r~e- ~r 
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(ls)~, (ls)~ 

7 = 1 y = 1 y = (1 - (Z/c)2) 1/2 
Atom Z [ F ~ F ~ F 

He 2 1.6883 157 1.6885 123 1.6883 123 
Be 4 3.682 106 3.684 107 3.682 106 
Ne 10 9.619 97 9.643 105 9.617 96 
Mg 12 11.599 97 11.641 110 11.597 96 
Ar 18 17.554 93 17.702 133 17.549 93 
Kr 36 35.499 77 36.761 342 35.473 75 
Xe 54 53.470 68 58.077 876 53.403 65 
Hg 80 79.488 59 97.345 2 5 9 0  79.258 57 

Wave functions calculated by means of Desclaux's program [7] setting 
137.106 . 

b Wave functions calculated by means of Desclaux's program [7]. 

C 

4. Conclusion 

The presented MBS results are affected by two approximat ions:  

a) the fixed relationship (9) between large and small component ,  
b) the use of integer principal quan tum numbers  n in the basis functions. 

The fairly good agreement  for total relativistic energy-corrections and orbital 

energies with the results of  numerical  R H F  calculations indicates that approxima- 

t ion a) does not  introduce large errors, at least not  for atoms up to atomic number  
54 (Xe). Different choices of the parameters e in (9) yield only slightly different 

numerical  results. On the other hand,  considerat ion of orbital exponents and mean  
radii shows that the restriction of n to integer values is acceptable for low atomic 

numbers  only. For  Z > 36 only an MBS of STFs with noninteger  radial exponents  
n is flexible enough to account  for the relativistic contract ion and  deformat ion of the 
radial wavefunctions.  
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Appendix 

All the one- and  two-electron integrals referred to can be reduced to know n  
elementary integrals and  can be calculated by recurrence relations. 
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A.1. The One-Electron Integrals 

If  the functions P are expanded according to (32), all the integrals appearing in 
Eqs. (25) and (26) are of the form 

fo ~ e-nXx m m >>. 0 
S (m,  n; 7, a) = dX (a + x)  ~ n >1 0 (A1) 

since 

[ dr e-n~rmB -~ = 1 + ~ S ( m  + n, n; "q, a) 

with 

B =  1 + F c  2 e +  and a = Z / ( 2 c  2 + e ) .  

The integrals S(m,  n) (the arguments ~ and a are omitted for the sake of simplicity) 
can be calculated recursively according to 

S(m,  n + 1) = 1 ~3m0 } n ~ - -~  -- ~S(m,  n) + m S ( m  - 1, n) (A2) 

m! 
~7~+ ~ aS(m,  1) (A3) S ( m  + 1 , 1 ) -  - -  

starting from 

m! 
S(m,  O) ~m+Z (A4) 

S(0, 1) = en~Ex(~a). (A5) 

For m = 0 the last term in the recurrence relation (A2) has to be omitted. The 
exponential integral Ex is defined by (A20) (see Sect. A.2.). 

A.2 The Two-Electron Integrals 

All integrals appearing in Eqs. (29) and (30) have the basic form 

fro IV(M, N; ~, 6; i, re; j ,  n) = dr1 dr2Uv(1, 2) 

x r~r~ e-nri e-~r2(2c2)-m-~B~m(rl)B[~(r2) (A6) 
where 

1 (e, + Z / r 3 ;  B,(r~) = 1 + ~c ~ 

Bj(r2) is given analogously. The above integrals I v are rewritten 

I v = (2c 2 + e0-m(2c 2 + ej)-" 

x { J ( N +  n + v , M +  m - v -  1 ; ~ , ~ ; j , n ; i , m )  

+ J ( M  + m + v , N  + n - v -  1;~7,~; i ,m;j ,n)} (A7) 
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with 

fo e-,Vv, e-~"u '~ (18) Y(n, m; ~, ~; a, p; b, q) = dV (a + v)------ ~ du (--~ + u)----~q 

where a = Z/(2c 2 + e,) ancl b = Z/(2e 2 + ej). In order to simplify the notation, 
the abbreviation J(n, m; ~, ~; a, p; b, q) - J(n, p; m, q) will be used. 

Integrating by parts one gets the following recurrence relations from (A8) 

1 
J ( n , p ; m , q  + 1) = ~ ( - ~ J ( n , p ; m , q )  + m Y ( n , p ; m  - 1, q) 

+ U(n + m , p , q ) }  q >/ 1, m i> 0 (A9) 

J (n ,p ;  m, O) = ~{U(n  + m,p ,  O) + mJ(n ,p ;  m - 1, 0)} (A10) 

J (n ,p  + 1;m,q)  = ~  - ~ ? J ( n , p ; m , q )  + n J ( n -  1 ,p ;m,q )  

v( .  + m,p,q) + s(m,q)} p 1,. 0 

(A11) 

J ( n , O ; m , q )  = l { - u ( n  + m ,O ,q )  + nJ(n - 1,0; m,q) + 3~oS(m,q)}. 

(A12) 

Here, in addition to S(m,  n) = S(m,  n; (7 + ~), b) defined by (A1), a further 
auxiliary integral 

U(n,p,  q) = e-(e+n)~(a + v)-P(b + v)-qv ~ dv (113) 

has been introduced. For n >/ 0 and p, q >/ 1, U can be recurred by the relation 

1 
g(n,  p, q) = a - b {g(n,  p - 1, q) - U(n, p, q - 1)}. (A14) 

If  one or both of the indices p or q are zero, U reduces to S. 

In order to start the recurrence calculation of J(n, p; m, q) one needs 

1 1 (A15) J(o,  o; o ,o )  - ~ + 

1 
J(0, 1; 0, 0) = ~ V(0, 1, 0) (A16) 

J(0, 0; 0, 1) = ~ {er - S(0, 1)} (A17) 

and furthermore J(0, 1 ; 0, 1). This integral 

f 0  0 e - r/v ~ oo e - ~u 
J (0 ,1 ;0 ,1 )  = d V ( a + v ) j ,  | d U ( b + u )  (A18) 
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can be reduced to a sum of  single integrals o f  the form 

e 
dt t In &(t) 

by changing the variables according to 

t = ~ ( a + v ) +  ~ : ( b + u )  and x = ( f u +  fb)/t. 

Expanding the functions In &(t) into appropriate  convergent series and integrating, 
one obtains the formula  

S(0, 1; 0, 1) = e ~ (El(K)In (K/a~) + E[2~(, 0 

, 7 E , + l ( ~ )  ( ~ + 7 ) '  
N \  

x [~7'H(i + 1, i ; - ,  --eS) -- ~'H(i + 1, i; ~, ~78)]}} 

(A19) 

where K = ~/a + ~b and 8 = b - a. The ith exponential integral E~ is defined by 
(see e.g. [27]) 

Ei(x) = e -t dt x > 0 (A20) 
x 

and satisfies the recurrence relation 

7 7 - E,(x) . (A21) 

The auxiliary integral 

f~: w e-t H(i, j; ~c, i f )  = -iT (t + ff)J dt (A22) 

can be recurred according to 

H ( i , j )  = H ( i -  1, j  - 1) + t z H ( i , j -  1) (A23) 

(the arguments  K a n d / ,  are omitted) together with (A21). E~ 2> is given by [27] 

E~2 ' (x )  = d t  (t) = �89 x + C) 2 + ~ + ( - 1 ) '  i2-[! (A24) 
X i=l 

where C is Catalan 's  constant.  
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